Set Up with Kubernetes
This section provides a quick guide to using SeaTunnel with Kubernetes.
Prerequisites
We assume that you have a local installations of the following:
So that the kubectl
and helm
commands are available on your local system.
For kubernetes minikube is our choice, at the time of writing this we are using version v1.23.3. You can start a cluster with the following command:
minikube start --kubernetes-version=v1.23.3
Installation
SeaTunnel docker image
To run the image with SeaTunnel, first create a Dockerfile
:
- Flink
- Spark
- Zeta (local-mode)
- Zeta (cluster-mode)
FROM apache/flink:1.13
ENV SEATUNNEL_VERSION="2.3.3"
ENV SEATUNNEL_HOME="/opt/seatunnel"
RUN wget https://dlcdn.apache.org/seatunnel/${SEATUNNEL_VERSION}/apache-seatunnel-${SEATUNNEL_VERSION}-bin.tar.gz
RUN tar -xzvf apache-seatunnel-${SEATUNNEL_VERSION}-bin.tar.gz
RUN mv apache-seatunnel-${SEATUNNEL_VERSION} ${SEATUNNEL_HOME}
RUN cd ${SEATUNNEL_HOME} && bash bin/install-plugin.sh ${SEATUNNEL_VERSION}
Then run the following commands to build the image:
docker build -t seatunnel:2.3.3-flink-1.13 -f Dockerfile .
Image seatunnel:2.3.3-flink-1.13
need to be present in the host (minikube) so that the deployment can take place.
Load image to minikube via:
minikube image load seatunnel:2.3.3-flink-1.13
FROM apache/spark:3.3.3-scala2.12-java11-ubuntu
USER root
ENV SEATUNNEL_VERSION="2.3.3"
ENV SEATUNNEL_HOME="/opt/seatunnel"
RUN wget https://dlcdn.apache.org/seatunnel/${SEATUNNEL_VERSION}/apache-seatunnel-${SEATUNNEL_VERSION}-bin.tar.gz
RUN tar -xzvf apache-seatunnel-${SEATUNNEL_VERSION}-bin.tar.gz
RUN mv apache-seatunnel-${SEATUNNEL_VERSION} ${SEATUNNEL_HOME}
RUN cd ${SEATUNNEL_HOME} && bash bin/install-plugin.sh ${SEATUNNEL_VERSION}
Then run the following commands to build the image:
docker build -t seatunnel:2.3.3-spark-3.3.3 -f Dockerfile .
Image seatunnel:2.3.3-spark-3.3.3
need to be present in the host (minikube) so that the deployment can take place.
Load image to minikube via:
minikube image load seatunnel:2.3.3-spark-3.3.3
FROM openjdk:8
ENV SEATUNNEL_VERSION="2.3.3"
ENV SEATUNNEL_HOME="/opt/seatunnel"
RUN wget https://dlcdn.apache.org/seatunnel/${SEATUNNEL_VERSION}/apache-seatunnel-${SEATUNNEL_VERSION}-bin.tar.gz
RUN tar -xzvf apache-seatunnel-${SEATUNNEL_VERSION}-bin.tar.gz
RUN mv apache-seatunnel-${SEATUNNEL_VERSION} ${SEATUNNEL_HOME}
RUN cd ${SEATUNNEL_HOME}||sh bin/install-plugin.sh ${SEATUNNEL_VERSION}
Then run the following commands to build the image:
docker build -t seatunnel:2.3.3 -f Dockerfile .
Image seatunnel:2.3.3
need to be present in the host (minikube) so that the deployment can take place.
Load image to minikube via:
minikube image load seatunnel:2.3.3
FROM openjdk:8
ENV SEATUNNEL_VERSION="2.3.3"
ENV SEATUNNEL_HOME="/opt/seatunnel"
RUN wget https://dlcdn.apache.org/seatunnel/${SEATUNNEL_VERSION}/apache-seatunnel-${SEATUNNEL_VERSION}-bin.tar.gz
RUN tar -xzvf apache-seatunnel-${SEATUNNEL_VERSION}-bin.tar.gz
RUN mv apache-seatunnel-${SEATUNNEL_VERSION} ${SEATUNNEL_HOME}
RUN mkdir -p $SEATUNNEL_HOME/logs
RUN cd ${SEATUNNEL_HOME}||sh bin/install-plugin.sh ${SEATUNNEL_VERSION}
Then run the following commands to build the image:
docker build -t seatunnel:2.3.3 -f Dockerfile .
Image seatunnel:2.3.3
need to be present in the host (minikube) so that the deployment can take place.
Load image to minikube via:
minikube image load seatunnel:2.3.3
Deploying the operator
- Flink
- Spark
- Zeta (local-mode)
- Zeta (cluster-mode)
The steps below provide a quick walk-through on setting up the Flink Kubernetes Operator. You can refer to Flink Kubernetes Operator - Quick Start for more details.
Notice: All the Kubernetes resources bellow are created in default namespace.
Install the certificate manager on your Kubernetes cluster to enable adding the webhook component (only needed once per Kubernetes cluster):
kubectl create -f https://github.com/jetstack/cert-manager/releases/download/v1.8.2/cert-manager.yaml
Now you can deploy the latest stable Flink Kubernetes Operator version using the included Helm chart:
helm repo add flink-kubernetes-operator-1.3.1 https://archive.apache.org/dist/flink/flink-kubernetes-operator-1.3.1/
helm install flink-kubernetes-operator flink-kubernetes-operator-1.3.1/flink-kubernetes-operator \
--set webhook.create=false --set image.repository=apache/flink-kubernetes-operator
You may verify your installation via kubectl
:
kubectl get pods
NAME READY STATUS RESTARTS AGE
flink-kubernetes-operator-5f466b8549-mgchb 1/1 Running 3 (23h ago) 16d
The steps below provide a quick walk-through on setting up the Spark Kubernetes Operator. You can refer to Spark Kubernetes Operator - Quick Start for more details.
Notice: All the Kubernetes resources bellow are created in default namespace.
Install the certificate manager on your Kubernetes cluster to enable adding the webhook component (only needed once per Kubernetes cluster):
kubectl create -f https://github.com/jetstack/cert-manager/releases/download/v1.8.2/cert-manager.yaml
Now you can deploy the latest stable spark Kubernetes Operator version using the included Helm chart:
helm repo add spark-operator https://googlecloudplatform.github.io/spark-on-k8s-operator
helm install seatunnel spark-operator/spark-operator \
--set webhook.enable=true --set serviceAccounts.spark.name=spark
You may verify your installation via kubectl
:
kubectl get pods
NAME READY STATUS RESTARTS AGE
seatunnel-spark-operator-57d966fdfc-v2mmw 1/1 Running 0 17s
Run SeaTunnel Application
Run Application:: SeaTunnel already providers out-of-the-box configurations.
In this guide we are going to use seatunnel.streaming.conf:
env {
execution.parallelism = 1
job.mode = "STREAMING"
checkpoint.interval = 2000
}
source {
FakeSource {
result_table_name = "fake"
row.num = 160000
schema = {
fields {
name = "string"
age = "int"
}
}
}
}
transform {
FieldMapper {
source_table_name = "fake"
result_table_name = "fake1"
field_mapper = {
age = age
name = new_name
}
}
}
sink {
Console {
source_table_name = "fake1"
}
}
Generate a configmap named seatunnel-config in Kubernetes for the seatunnel.streaming.conf so that we can mount the config content in pod.
kubectl create cm seatunnel-config \
--from-file=seatunnel.streaming.conf=seatunnel.streaming.conf
- Flink
- Spark
- Zeta (local-mode)
- Zeta (cluster-mode)
Once the Flink Kubernetes Operator is running as seen in the previous steps you are ready to submit a Flink (SeaTunnel) job:
- Create
seatunnel-flink.yaml
FlinkDeployment manifest:
apiVersion: flink.apache.org/v1beta1
kind: FlinkDeployment
metadata:
name: seatunnel-flink-streaming-example
spec:
image: seatunnel:2.3.3-flink-1.13
flinkVersion: v1_13
flinkConfiguration:
taskmanager.numberOfTaskSlots: "2"
serviceAccount: flink
jobManager:
replicas: 1
resource:
memory: "1024m"
cpu: 1
taskManager:
resource:
memory: "1024m"
cpu: 1
podTemplate:
spec:
containers:
- name: flink-main-container
volumeMounts:
- name: seatunnel-config
mountPath: /data/seatunnel.streaming.conf
subPath: seatunnel.streaming.conf
volumes:
- name: seatunnel-config
configMap:
name: seatunnel-config
items:
- key: seatunnel.streaming.conf
path: seatunnel.streaming.conf
job:
jarURI: local:///opt/seatunnel/starter/seatunnel-flink-13-starter.jar
entryClass: org.apache.seatunnel.core.starter.flink.SeaTunnelFlink
args: ["--config", "/data/seatunnel.streaming.conf"]
parallelism: 2
upgradeMode: stateless
- Run the example application:
kubectl apply -f seatunnel-flink.yaml
Once the Spark Kubernetes Operator is running as seen in the previous steps you are ready to submit a Spark (SeaTunnel) job:
- Create
seatunnel-spark.yaml
Spark Deployment manifest:
apiVersion: "sparkoperator.k8s.io/v1beta2"
kind: SparkApplication
metadata:
name: seatunnel-spark-streaming-example
spec:
type: Java
mode: cluster
image: seatunnel:2.3.3-spark-3.3.3
imagePullPolicy: Always
mainClass: org.apache.seatunnel.core.starter.spark.SeaTunnelSpark
mainApplicationFile: "local:///opt/seatunnel/starter/seatunnel-spark-3-starter.jar"
arguments: ["--config", "/data/seatunnel.streaming.conf"]
sparkVersion: "3.3.3"
restartPolicy:
type: Never
volumes:
- name: "test-volume"
hostPath:
path: "/tmp"
type: Directory
driver:
cores: 1
coreLimit: "1200m"
memory: "512m"
labels:
version: 3.1.1
serviceAccount: spark
configMaps:
- name: seatunnel-config
path: seatunnel.streaming.conf
volumeMounts:
- name: "test-volume"
mountPath: "/tmp"
executor:
cores: 1
instances: 1
memory: "512m"
labels:
version: 3.1.1
configMaps:
- name: seatunnel-config
path: seatunnel.streaming.conf
volumeMounts:
- name: "test-volume"
mountPath: "/tmp"
- Run the example application:
kubectl apply -f seatunnel-spark.yaml
- Create
seatunnel.yaml
:
apiVersion: v1
kind: Pod
metadata:
name: seatunnel
spec:
containers:
- name: seatunnel
image: seatunnel:2.3.3
command: ["/bin/sh","-c","/opt/seatunnel/bin/seatunnel.sh --config /data/seatunnel.streaming.conf -e local"]
resources:
limits:
cpu: "1"
memory: 4G
requests:
cpu: "1"
memory: 2G
volumeMounts:
- name: seatunnel-config
mountPath: /data/seatunnel.streaming.conf
subPath: seatunnel.streaming.conf
volumes:
- name: seatunnel-config
configMap:
name: seatunnel-config
items:
- key: seatunnel.streaming.conf
path: seatunnel.streaming.conf
- Run the example application:
kubectl apply -f seatunnel.yaml
Then, we use the following command to load some configuration files used by the seatunnel cluster into the configmap
Create the yaml file locally as follows
- Create
hazelcast-client.yaml
:
hazelcast-client:
cluster-name: seatunnel
properties:
hazelcast.logging.type: log4j2
network:
cluster-members:
- localhost:5801
- Create
hazelcast.yaml
:
hazelcast:
cluster-name: seatunnel
network:
rest-api:
enabled: true
endpoint-groups:
CLUSTER_WRITE:
enabled: true
DATA:
enabled: true
join:
tcp-ip:
enabled: true
member-list:
- localhost
port:
auto-increment: false
port: 5801
properties:
hazelcast.invocation.max.retry.count: 20
hazelcast.tcp.join.port.try.count: 30
hazelcast.logging.type: log4j2
hazelcast.operation.generic.thread.count: 50
- Create
seatunnel.yaml
:
seatunnel:
engine:
history-job-expire-minutes: 1440
backup-count: 1
queue-type: blockingqueue
print-execution-info-interval: 60
print-job-metrics-info-interval: 60
slot-service:
dynamic-slot: true
checkpoint:
interval: 10000
timeout: 60000
storage:
type: hdfs
max-retained: 3
plugin-config:
namespace: /tmp/seatunnel/checkpoint_snapshot
storage.type: hdfs
fs.defaultFS: file:///tmp/ # Ensure that the directory has written permission
Create congfigmaps for the configuration file using the following command
kubectl create configmap hazelcast-client --from-file=hazelcast-client.yaml
kubectl create configmap hazelcast --from-file=hazelcast.yaml
kubectl create configmap seatunnelmap --from-file=seatunnel.yaml
Deploy Reloader to achieve hot deployment We use the Reloader here to automatically restart the pod when the configuration file or other modifications are made. You can also directly give the value of the configuration file and do not use the Reloader
wget https://raw.githubusercontent.com/stakater/Reloader/master/deployments/kubernetes/reloader.yaml
kubectl apply -f reloader.yaml
- Create
seatunnel-cluster.yml
:
apiVersion: v1
kind: Service
metadata:
name: seatunnel
spec:
selector:
app: seatunnel
ports:
- port: 5801
name: seatunnel
clusterIP: None
---
apiVersion: apps/v1
kind: StatefulSet
metadata:
name: seatunnel
annotations:
configmap.reloader.stakater.com/reload: "hazelcast,hazelcast-client,seatunnelmap"
spec:
serviceName: "seatunnel"
replicas: 3 # modify replicas according to your case
selector:
matchLabels:
app: seatunnel
template:
metadata:
labels:
app: seatunnel
spec:
containers:
- name: seatunnel
image: seatunnel:2.3.3
imagePullPolicy: IfNotPresent
ports:
- containerPort: 5801
name: client
command: ["/bin/sh","-c","/opt/seatunnel/bin/seatunnel-cluster.sh -DJvmOption=-Xms2G -Xmx2G"]
resources:
limits:
cpu: "1"
memory: 4G
requests:
cpu: "1"
memory: 2G
volumeMounts:
- mountPath: "/opt/seatunnel/config/hazelcast.yaml"
name: hazelcast
subPath: hazelcast.yaml
- mountPath: "/opt/seatunnel/config/hazelcast-client.yaml"
name: hazelcast-client
subPath: hazelcast-client.yaml
- mountPath: "/opt/seatunnel/config/seatunnel.yaml"
name: seatunnelmap
subPath: seatunnel.yaml
- mountPath: /data/seatunnel.streaming.conf
name: seatunnel-config
subPath: seatunnel.streaming.conf
volumes:
- name: hazelcast
configMap:
name: hazelcast
- name: hazelcast-client
configMap:
name: hazelcast-client
- name: seatunnelmap
configMap:
name: seatunnelmap
- name: seatunnel-config
configMap:
name: seatunnel-config
items:
- key: seatunnel.streaming.conf
path: seatunnel.streaming.conf
- Starting a cluster:
kubectl apply -f seatunnel-cluster.yml
Then modify the seatunnel configuration in pod using the following command
kubectl edit cm hazelcast
Change the member-list option to your cluster address
This uses the headless service access mode
The format for accessing between general pods is [pod-name].[service-name].[namespace].svc.cluster.local
for example:
- seatunnel-0.seatunnel.default.svc.cluster.local
- seatunnel-1.seatunnel.default.svc.cluster.local
- seatunnel-2.seatunnel.default.svc.cluster.local
kubectl edit cm hazelcast-client
Change the cluster-members option to your cluster address
for example:
- seatunnel-0.seatunnel.default.svc.cluster.local:5801
- seatunnel-1.seatunnel.default.svc.cluster.local:5801
- seatunnel-2.seatunnel.default.svc.cluster.local:5801
Later, you will see that the pod automatically restarts and updates the seatunnel configuration
kubectl edit cm hazelcast-client
After we wait for all pod updates to be completed, we can use the following command to check if the configuration inside the pod has been updated
kubectl exec -it seatunnel-0 -- cat /opt/seatunnel/config/hazelcast-client.yaml
Afterwards, we can submit tasks to any pod
kubectl exec -it seatunnel-0 -- /opt/seatunnel/bin/seatunnel.sh --config /data/seatunnel.streaming.conf
See The Output
- Flink
- Spark
- Zeta (local-mode)
- Zeta (cluster-mode)
You may follow the logs of your job, after a successful startup (which can take on the order of a minute in a fresh environment, seconds afterwards) you can:
kubectl logs -f deploy/seatunnel-flink-streaming-example
looks like the below:
...
2023-01-31 12:13:54,349 INFO org.apache.flink.runtime.executiongraph.ExecutionGraph [] - Source: SeaTunnel FakeSource -> Sink Writer: Console (1/1) (1665d2d011b2f6cf6525c0e5e75ec251) switched from SCHEDULED to DEPLOYING.
2023-01-31 12:13:56,684 INFO org.apache.flink.runtime.executiongraph.ExecutionGraph [] - Deploying Source: SeaTunnel FakeSource -> Sink Writer: Console (1/1) (attempt #0) with attempt id 1665d2d011b2f6cf6525c0e5e75ec251 to seatunnel-flink-streaming-example-taskmanager-1-1 @ 100.103.244.106 (dataPort=39137) with allocation id fbe162650c4126649afcdaff00e46875
2023-01-31 12:13:57,794 INFO org.apache.flink.runtime.executiongraph.ExecutionGraph [] - Source: SeaTunnel FakeSource -> Sink Writer: Console (1/1) (1665d2d011b2f6cf6525c0e5e75ec251) switched from DEPLOYING to INITIALIZING.
2023-01-31 12:13:58,203 INFO org.apache.flink.runtime.executiongraph.ExecutionGraph [] - Source: SeaTunnel FakeSource -> Sink Writer: Console (1/1) (1665d2d011b2f6cf6525c0e5e75ec251) switched from INITIALIZING to RUNNING.
If OOM error accur in the log, you can decrease the row.num
value in seatunnel.streaming.conf
To expose the Flink Dashboard you may add a port-forward rule:
kubectl port-forward svc/seatunnel-flink-streaming-example-rest 8081
Now the Flink Dashboard is accessible at localhost:8081.
Or launch minikube dashboard
for a web-based Kubernetes user interface.
The content printed in the TaskManager Stdout log:
kubectl logs \
-l 'app in (seatunnel-flink-streaming-example), component in (taskmanager)' \
--tail=-1 \
-f
looks like the below (your content may be different since we use FakeSource
to automatically generate random stream data):
...
subtaskIndex=0: row=159991 : VVgpp, 978840000
subtaskIndex=0: row=159992 : JxrOC, 1493825495
subtaskIndex=0: row=159993 : YmCZR, 654146216
subtaskIndex=0: row=159994 : LdmUn, 643140261
subtaskIndex=0: row=159995 : tURkE, 837012821
subtaskIndex=0: row=159996 : uPDfd, 2021489045
subtaskIndex=0: row=159997 : mjrdG, 2074957853
subtaskIndex=0: row=159998 : xbeUi, 864518418
subtaskIndex=0: row=159999 : sSWLb, 1924451911
subtaskIndex=0: row=160000 : AuPlM, 1255017876
To stop your job and delete your FlinkDeployment you can simply:
kubectl delete -f seatunnel-flink.yaml
You may follow the logs of your job, after a successful startup (which can take on the order of a minute in a fresh environment, seconds afterwards) you can:
kubectl logs -f seatunnel-spark-example-driver
looks like the below:
...
23/11/13 04:52:45 INFO SparkContext: Running Spark version 3.3.3
23/11/13 04:52:45 INFO ResourceUtils: ==============================================================
23/11/13 04:52:45 INFO ResourceUtils: No custom resources configured for spark.driver.
23/11/13 04:52:45 INFO ResourceUtils: ==============================================================
23/11/13 04:52:45 INFO SparkContext: Submitted application: SeaTunnel
23/11/13 04:52:45 INFO ResourceProfile: Default ResourceProfile created, executor resources: Map(cores -> name: cores, amount: 1, script: , vendor: , memory -> name: memory, amount: 1024, script: , vendor: , offHeap -> name: offHeap, amount: 0, script: , vendor: ), task resources: Map(cpus -> name: cpus, amount: 1.0)
23/11/13 04:52:45 INFO ResourceProfile: Limiting resource is cpus at 1 tasks per executor
23/11/13 04:52:45 INFO ResourceProfileManager: Added ResourceProfile id: 0
To expose the Spark UI you may add a port-forward rule:
kubectl port-forward svc/seatunnel-spark-example-ui-svc 4040
Now the Spark UI is accessible at localhost:4040.
To stop your job and delete your Spark application you can simply:
kubectl delete -f seatunnel-spark.yaml
You may follow the logs of your job, after a successful startup (which can take on the order of a minute in a fresh environment, seconds afterwards) you can:
kubectl logs -f seatunnel
looks like the below (your content may be different since we use FakeSource
to automatically generate random stream data):
...
2023-10-07 08:20:12,797 INFO org.apache.seatunnel.connectors.seatunnel.console.sink.ConsoleSinkWriter - subtaskIndex=0 rowIndex=25673: SeaTunnelRow#tableId= SeaTunnelRow#kind=INSERT : hRJdE, 1295862507
2023-10-07 08:20:12,797 INFO org.apache.seatunnel.connectors.seatunnel.console.sink.ConsoleSinkWriter - subtaskIndex=0 rowIndex=25674: SeaTunnelRow#tableId= SeaTunnelRow#kind=INSERT : kXlew, 935460726
2023-10-07 08:20:12,797 INFO org.apache.seatunnel.connectors.seatunnel.console.sink.ConsoleSinkWriter - subtaskIndex=0 rowIndex=25675: SeaTunnelRow#tableId= SeaTunnelRow#kind=INSERT : FrNOT, 1714358118
2023-10-07 08:20:12,797 INFO org.apache.seatunnel.connectors.seatunnel.console.sink.ConsoleSinkWriter - subtaskIndex=0 rowIndex=25676: SeaTunnelRow#tableId= SeaTunnelRow#kind=INSERT : kSajX, 126709414
2023-10-07 08:20:12,797 INFO org.apache.seatunnel.connectors.seatunnel.console.sink.ConsoleSinkWriter - subtaskIndex=0 rowIndex=25677: SeaTunnelRow#tableId= SeaTunnelRow#kind=INSERT : YhpQv, 2020198351
2023-10-07 08:20:12,797 INFO org.apache.seatunnel.connectors.seatunnel.console.sink.ConsoleSinkWriter - subtaskIndex=0 rowIndex=25678: SeaTunnelRow#tableId= SeaTunnelRow#kind=INSERT : nApin, 691339553
2023-10-07 08:20:12,797 INFO org.apache.seatunnel.connectors.seatunnel.console.sink.ConsoleSinkWriter - subtaskIndex=0 rowIndex=25679: SeaTunnelRow#tableId= SeaTunnelRow#kind=INSERT : KZNNa, 1720773736
2023-10-07 08:20:12,797 INFO org.apache.seatunnel.connectors.seatunnel.console.sink.ConsoleSinkWriter - subtaskIndex=0 rowIndex=25680: SeaTunnelRow#tableId= SeaTunnelRow#kind=INSERT : uCUBI, 490868386
2023-10-07 08:20:12,797 INFO org.apache.seatunnel.connectors.seatunnel.console.sink.ConsoleSinkWriter - subtaskIndex=0 rowIndex=25681: SeaTunnelRow#tableId= SeaTunnelRow#kind=INSERT : oTLmO, 98770781
2023-10-07 08:20:12,797 INFO org.apache.seatunnel.connectors.seatunnel.console.sink.ConsoleSinkWriter - subtaskIndex=0 rowIndex=25682: SeaTunnelRow#tableId= SeaTunnelRow#kind=INSERT : UECud, 835494636
2023-10-07 08:20:12,797 INFO org.apache.seatunnel.connectors.seatunnel.console.sink.ConsoleSinkWriter - subtaskIndex=0 rowIndex=25683: SeaTunnelRow#tableId= SeaTunnelRow#kind=INSERT : XNegY, 1602828896
2023-10-07 08:20:12,797 INFO org.apache.seatunnel.connectors.seatunnel.console.sink.ConsoleSinkWriter - subtaskIndex=0 rowIndex=25684: SeaTunnelRow#tableId= SeaTunnelRow#kind=INSERT : LcFBx, 1400869177
2023-10-07 08:20:12,797 INFO org.apache.seatunnel.connectors.seatunnel.console.sink.ConsoleSinkWriter - subtaskIndex=0 rowIndex=25685: SeaTunnelRow#tableId= SeaTunnelRow#kind=INSERT : EqSfF, 1933614060
2023-10-07 08:20:12,797 INFO org.apache.seatunnel.connectors.seatunnel.console.sink.ConsoleSinkWriter - subtaskIndex=0 rowIndex=25686: SeaTunnelRow#tableId= SeaTunnelRow#kind=INSERT : BODIs, 1839533801
2023-10-07 08:20:12,797 INFO org.apache.seatunnel.connectors.seatunnel.console.sink.ConsoleSinkWriter - subtaskIndex=0 rowIndex=25687: SeaTunnelRow#tableId= SeaTunnelRow#kind=INSERT : doxcI, 970104616
2023-10-07 08:20:12,797 INFO org.apache.seatunnel.connectors.seatunnel.console.sink.ConsoleSinkWriter - subtaskIndex=0 rowIndex=25688: SeaTunnelRow#tableId= SeaTunnelRow#kind=INSERT : IEVYn, 371893767
2023-10-07 08:20:12,797 INFO org.apache.seatunnel.connectors.seatunnel.console.sink.ConsoleSinkWriter - subtaskIndex=0 rowIndex=25689: SeaTunnelRow#tableId= SeaTunnelRow#kind=INSERT : YXYfq, 1719257882
2023-10-07 08:20:12,797 INFO org.apache.seatunnel.connectors.seatunnel.console.sink.ConsoleSinkWriter - subtaskIndex=0 rowIndex=25690: SeaTunnelRow#tableId= SeaTunnelRow#kind=INSERT : LFWEm, 725033360
2023-10-07 08:20:12,797 INFO org.apache.seatunnel.connectors.seatunnel.console.sink.ConsoleSinkWriter - subtaskIndex=0 rowIndex=25691: SeaTunnelRow#tableId= SeaTunnelRow#kind=INSERT : ypUrY, 1591744616
2023-10-07 08:20:12,797 INFO org.apache.seatunnel.connectors.seatunnel.console.sink.ConsoleSinkWriter - subtaskIndex=0 rowIndex=25692: SeaTunnelRow#tableId= SeaTunnelRow#kind=INSERT : rlnzJ, 412162913
2023-10-07 08:20:12,797 INFO org.apache.seatunnel.connectors.seatunnel.console.sink.ConsoleSinkWriter - subtaskIndex=0 rowIndex=25693: SeaTunnelRow#tableId= SeaTunnelRow#kind=INSERT : zWKnt, 976816261
2023-10-07 08:20:12,797 INFO org.apache.seatunnel.connectors.seatunnel.console.sink.ConsoleSinkWriter - subtaskIndex=0 rowIndex=25694: SeaTunnelRow#tableId= SeaTunnelRow#kind=INSERT : PXrsk, 43554541
To stop your job and delete your SeaTunnel Deployment you can simply:
kubectl delete -f seatunnel.yaml
You may follow the logs of your job, after a successful startup (which can take on the order of a minute in a fresh environment, seconds afterwards) you can:
kubectl exec -it seatunnel-1 -- tail -f /opt/seatunnel/logs/seatunnel-engine-server.log | grep ConsoleSinkWriter
looks like the below (your content may be different since we use FakeSource
to automatically generate random stream data):
...
2023-10-10 08:05:07,283 INFO org.apache.seatunnel.connectors.seatunnel.console.sink.ConsoleSinkWriter - subtaskIndex=1 rowIndex=7: SeaTunnelRow#tableId= SeaTunnelRow#kind=INSERT : IibHk, 820962465
2023-10-10 08:05:07,283 INFO org.apache.seatunnel.connectors.seatunnel.console.sink.ConsoleSinkWriter - subtaskIndex=1 rowIndex=8: SeaTunnelRow#tableId= SeaTunnelRow#kind=INSERT : lmKdb, 1072498088
2023-10-10 08:05:07,283 INFO org.apache.seatunnel.connectors.seatunnel.console.sink.ConsoleSinkWriter - subtaskIndex=1 rowIndex=9: SeaTunnelRow#tableId= SeaTunnelRow#kind=INSERT : iqGva, 918730371
2023-10-10 08:05:07,284 INFO org.apache.seatunnel.connectors.seatunnel.console.sink.ConsoleSinkWriter - subtaskIndex=1 rowIndex=10: SeaTunnelRow#tableId= SeaTunnelRow#kind=INSERT : JMHmq, 1130771733
2023-10-10 08:05:07,284 INFO org.apache.seatunnel.connectors.seatunnel.console.sink.ConsoleSinkWriter - subtaskIndex=1 rowIndex=11: SeaTunnelRow#tableId= SeaTunnelRow#kind=INSERT : rxoHF, 189596686
2023-10-10 08:05:07,284 INFO org.apache.seatunnel.connectors.seatunnel.console.sink.ConsoleSinkWriter - subtaskIndex=1 rowIndex=12: SeaTunnelRow#tableId= SeaTunnelRow#kind=INSERT : OSblw, 559472064
2023-10-10 08:05:07,284 INFO org.apache.seatunnel.connectors.seatunnel.console.sink.ConsoleSinkWriter - subtaskIndex=1 rowIndex=13: SeaTunnelRow#tableId= SeaTunnelRow#kind=INSERT : yTZjG, 1842482272
2023-10-10 08:05:07,284 INFO org.apache.seatunnel.connectors.seatunnel.console.sink.ConsoleSinkWriter - subtaskIndex=1 rowIndex=14: SeaTunnelRow#tableId= SeaTunnelRow#kind=INSERT : RRiMg, 1713777214
2023-10-10 08:05:07,284 INFO org.apache.seatunnel.connectors.seatunnel.console.sink.ConsoleSinkWriter - subtaskIndex=1 rowIndex=15: SeaTunnelRow#tableId= SeaTunnelRow#kind=INSERT : lRcsd, 1626041649
2023-10-10 08:05:07,284 INFO org.apache.seatunnel.connectors.seatunnel.console.sink.ConsoleSinkWriter - subtaskIndex=1 rowIndex=16: SeaTunnelRow#tableId= SeaTunnelRow#kind=INSERT : QrNNW, 41355294
To stop your job and delete your SeaTunnel Deployment you can simply:
kubectl delete -f seatunnel-cluster.yaml
Happy SeaTunneling!
What's More
For now, you are already taking a quick look at SeaTunnel, you could see connector to find all source and sink SeaTunnel supported. Or see deployment if you want to submit your application in another kind of your engine cluster.