Kafka
Kafka source connector
Description
To consume data from Kafka , supported Kafka version >= 0.10.0 .
Engine Supported and plugin name
- Spark: KafkaStream
- Flink: Kafka
Options
- Spark
- Flink
| name | type | required | default value | 
|---|---|---|---|
| topics | string | yes | - | 
| consumer.group.id | string | yes | - | 
| consumer.bootstrap.servers | string | yes | - | 
| consumer.* | string | no | - | 
| common-options | string | yes | - | 
| name | type | required | default value | 
|---|---|---|---|
| topics | string | yes | - | 
| consumer.group.id | string | yes | - | 
| consumer.bootstrap.servers | string | yes | - | 
| schema | string | yes | - | 
| format.type | string | yes | - | 
| format.* | string | no | - | 
| consumer.* | string | no | - | 
| rowtime.field | string | no | - | 
| watermark | long | no | - | 
| offset.reset | string | no | - | 
| common-options | string | no | - | 
topics [string]
Kafka topic name. If there are multiple topics, use , to split, for example: "tpc1,tpc2"
consumer.group.id [string]
Kafka consumer group id, used to distinguish different consumer groups
consumer.bootstrap.servers [string]
Kafka cluster address, separated by ,
- Spark
- Flink
format.type [string]
Currently supports three formats
- json
- csv
- avro
format.* [string]
The csv format uses this parameter to set the separator and so on. For example, set the column delimiter to \t , format.field-delimiter=\\t
schema [string]
- csv - The schemaofcsvis a string ofjsonArray, such as"[{\"field\":\"name\",\"type\":\"string\"},{\"field\":\"age\ ",\"type\":\"int\"}]".
 
- The 
- json - The schemaparameter ofjsonis to provide ajson stringof the original data, and theschemacan be automatically generated, but the original data with the most complete content needs to be provided, otherwise the fields will be lost.
 
- The 
- avro - The schemaparameter ofavrois to provide a standardavro schema JSON string, such as{\"name\":\"test\",\"type\":\"record\",\"fields\":[{ \"name\":\"name\",\"type\":\"string\"},{\"name\":\"age\",\"type\":\"long\"} ,{\"name\":\"addrs\",\"type\":{\"name\":\"addrs\",\"type\":\"record\",\"fields\" :[{\"name\":\"province\",\"type\":\"string\"},{\"name\":\"city\",\"type\":\"string \"}]}}]}
 
- The 
- To learn more about how the - Avro Schema JSON stringshould be defined, please refer to: https://avro.apache.org/docs/current/spec.html
rowtime.field [string]
Extract timestamp using current configuration field for flink event time watermark
watermark [long]
Sets a built-in watermark strategy for rowtime.field attributes which are out-of-order by a bounded time interval. Emits watermarks which are the maximum observed timestamp minus the specified delay.
offset.reset [string]
The consumer's initial offset is only valid for new consumers. There are three modes
- latest- Start consumption from the latest offset
 
- earliest- Start consumption from the earliest offset
 
- specific- Start consumption from the specified offset, and specify thestart offsetof each partition at this time. The setting method is throughoffset.reset.specific="{0:111,1:123}"
 
- Start consumption from the specified 
consumer.* [string]
In addition to the above necessary parameters that must be specified by the Kafka consumer client, users can also specify multiple consumer client non-mandatory parameters, covering all consumer parameters specified in the official Kafka document.
The way to specify parameters is to add the prefix consumer. to the original parameter name. For example, the way to specify auto.offset.reset is: consumer.auto.offset.reset = latest . If these non-essential parameters are not specified, they will use the default values given in the official Kafka documentation.
common options [string]
Source plugin common parameters, please refer to Source Plugin for details
Examples
- Spark
- Flink
kafkaStream {
    topics = "seatunnel"
    consumer.bootstrap.servers = "localhost:9092"
    consumer.group.id = "seatunnel_group"
}
KafkaTableStream {
    consumer.bootstrap.servers = "127.0.0.1:9092"
    consumer.group.id = "seatunnel5"
    topics = test
    result_table_name = test
    format.type = csv
    schema = "[{\"field\":\"name\",\"type\":\"string\"},{\"field\":\"age\",\"type\":\"int\"}]"
    format.field-delimiter = ";"
    format.allow-comments = "true"
    format.ignore-parse-errors = "true"
}