OssFile
Oss file source connector
Support Those Engines
Spark
Flink
SeaTunnel Zeta
Usage Dependency
For Spark/Flink Engine
- You must ensure your spark/flink cluster already integrated hadoop. The tested hadoop version is 2.x.
- You must ensure
hadoop-aliyun-xx.jar,aliyun-sdk-oss-xx.jarandjdom-xx.jarin${SEATUNNEL_HOME}/plugins/dir and the version ofhadoop-aliyunjar need equals your hadoop version which used in spark/flink andaliyun-sdk-oss-xx.jarandjdom-xx.jarversion needs to be the version corresponding to thehadoop-aliyunversion. Eg:hadoop-aliyun-3.1.4.jardependencyaliyun-sdk-oss-3.4.1.jarandjdom-1.1.jar.
For SeaTunnel Zeta Engine
- You must ensure
seatunnel-hadoop3-3.1.4-uber.jar,aliyun-sdk-oss-3.4.1.jar,hadoop-aliyun-3.1.4.jarandjdom-1.1.jarin${SEATUNNEL_HOME}/lib/dir.
Key features
Read all the data in a split in a pollNext call. What splits are read will be saved in snapshot.
- column projection
- parallelism
- support user-defined split
- file format type
- text
- csv
- parquet
- orc
- json
- excel
Data Type Mapping
Data type mapping is related to the type of file being read, We supported as the following file types:
text csv parquet orc json excel
JSON File Type
If you assign file type to json, you should also assign schema option to tell connector how to parse data to the row you want.
For example:
upstream data is the following:
{"code": 200, "data": "get success", "success": true}
You can also save multiple pieces of data in one file and split them by newline:
{"code": 200, "data": "get success", "success": true}
{"code": 300, "data": "get failed", "success": false}
you should assign schema as the following:
schema {
fields {
code = int
data = string
success = boolean
}
}
connector will generate data as the following:
| code | data | success |
|---|---|---|
| 200 | get success | true |
Text Or CSV File Type
If you assign file type to text csv, you can choose to specify the schema information or not.
For example, upstream data is the following:
tyrantlucifer#26#male
If you do not assign data schema connector will treat the upstream data as the following:
| content |
|---|
| tyrantlucifer#26#male |
If you assign data schema, you should also assign the option field_delimiter too except CSV file type
you should assign schema and delimiter as the following:
field_delimiter = "#"
schema {
fields {
name = string
age = int
gender = string
}
}
connector will generate data as the following:
| name | age | gender |
|---|---|---|
| tyrantlucifer | 26 | male |
Orc File Type
If you assign file type to parquet orc, schema option not required, connector can find the schema of upstream data automatically.
| Orc Data type | SeaTunnel Data type |
|---|---|
| BOOLEAN | BOOLEAN |
| INT | INT |
| BYTE | BYTE |
| SHORT | SHORT |
| LONG | LONG |
| FLOAT | FLOAT |
| DOUBLE | DOUBLE |
| BINARY | BINARY |
| STRING VARCHAR CHAR | STRING |
| DATE | LOCAL_DATE_TYPE |
| TIMESTAMP | LOCAL_DATE_TIME_TYPE |
| DECIMAL | DECIMAL |
| LIST(STRING) | STRING_ARRAY_TYPE |
| LIST(BOOLEAN) | BOOLEAN_ARRAY_TYPE |
| LIST(TINYINT) | BYTE_ARRAY_TYPE |
| LIST(SMALLINT) | SHORT_ARRAY_TYPE |
| LIST(INT) | INT_ARRAY_TYPE |
| LIST(BIGINT) | LONG_ARRAY_TYPE |
| LIST(FLOAT) | FLOAT_ARRAY_TYPE |
| LIST(DOUBLE) | DOUBLE_ARRAY_TYPE |
| Map<K,V> | MapType, This type of K and V will transform to SeaTunnel type |
| STRUCT | SeaTunnelRowType |
Parquet File Type
If you assign file type to parquet orc, schema option not required, connector can find the schema of upstream data automatically.
| Orc Data type | SeaTunnel Data type |
|---|---|
| INT_8 | BYTE |
| INT_16 | SHORT |
| DATE | DATE |
| TIMESTAMP_MILLIS | TIMESTAMP |
| INT64 | LONG |
| INT96 | TIMESTAMP |
| BINARY | BYTES |
| FLOAT | FLOAT |
| DOUBLE | DOUBLE |
| BOOLEAN | BOOLEAN |
| FIXED_LEN_BYTE_ARRAY | TIMESTAMP DECIMAL |
| DECIMAL | DECIMAL |
| LIST(STRING) | STRING_ARRAY_TYPE |
| LIST(BOOLEAN) | BOOLEAN_ARRAY_TYPE |
| LIST(TINYINT) | BYTE_ARRAY_TYPE |
| LIST(SMALLINT) | SHORT_ARRAY_TYPE |
| LIST(INT) | INT_ARRAY_TYPE |
| LIST(BIGINT) | LONG_ARRAY_TYPE |
| LIST(FLOAT) | FLOAT_ARRAY_TYPE |
| LIST(DOUBLE) | DOUBLE_ARRAY_TYPE |
| Map<K,V> | MapType, This type of K and V will transform to SeaTunnel type |
| STRUCT | SeaTunnelRowType |
Options
| name | type | required | default value | Description |
|---|---|---|---|---|
| path | string | yes | - | The Oss path that needs to be read can have sub paths, but the sub paths need to meet certain format requirements. Specific requirements can be referred to "parse_partition_from_path" option |
| file_format_type | string | yes | - | File type, supported as the following file types: text csv parquet orc json excel |
| bucket | string | yes | - | The bucket address of oss file system, for example: oss://seatunnel-test. |
| endpoint | string | yes | - | fs oss endpoint |
| read_columns | list | no | - | The read column list of the data source, user can use it to implement field projection. The file type supported column projection as the following shown: text csv parquet orc json excel . If the user wants to use this feature when reading text json csv files, the "schema" option must be configured. |
| access_key | string | no | - | |
| access_secret | string | no | - | |
| delimiter | string | no | \001 | Field delimiter, used to tell connector how to slice and dice fields when reading text files. Default \001, the same as hive's default delimiter. |
| parse_partition_from_path | boolean | no | true | Control whether parse the partition keys and values from file path. For example if you read a file from path oss://hadoop-cluster/tmp/seatunnel/parquet/name=tyrantlucifer/age=26. Every record data from file will be added these two fields: name="tyrantlucifer", age=16 |
| date_format | string | no | yyyy-MM-dd | Date type format, used to tell connector how to convert string to date, supported as the following formats:yyyy-MM-dd yyyy.MM.dd yyyy/MM/dd. default yyyy-MM-dd |
| datetime_format | string | no | yyyy-MM-dd HH:mm:ss | Datetime type format, used to tell connector how to convert string to datetime, supported as the following formats:yyyy-MM-dd HH:mm:ss yyyy.MM.dd HH:mm:ss yyyy/MM/dd HH:mm:ss yyyyMMddHHmmss |
| time_format | string | no | HH:mm:ss | Time type format, used to tell connector how to convert string to time, supported as the following formats:HH:mm:ss HH:mm:ss.SSS |
| skip_header_row_number | long | no | 0 | Skip the first few lines, but only for the txt and csv. For example, set like following:skip_header_row_number = 2. Then SeaTunnel will skip the first 2 lines from source files |
| schema | config | no | - | The schema of upstream data. |
| sheet_name | string | no | - | Reader the sheet of the workbook,Only used when file_format is excel. |
| compress_codec | string | no | none | Which compress codec the files used. |
| file_filter_pattern | string | no | *.txt means you only need read the files end with .txt | |
| common-options | config | no | - | Source plugin common parameters, please refer to Source Common Options for details. |
compress_codec [string]
The compress codec of files and the details that supported as the following shown:
- txt:
lzonone - json:
lzonone - csv:
lzonone - orc/parquet:
automatically recognizes the compression type, no additional settings required.
file_filter_pattern [string]
Filter pattern, which used for filtering files.
schema [config]
Only need to be configured when the file_format_type are text, json, excel or csv ( Or other format we can't read the schema from metadata).
fields [Config]
The schema of upstream data.
How to Create a Oss Data Synchronization Jobs
The following example demonstrates how to create a data synchronization job that reads data from Oss and prints it on the local client:
# Set the basic configuration of the task to be performed
env {
parallelism = 1
job.mode = "BATCH"
}
# Create a source to connect to Oss
source {
OssFile {
path = "/seatunnel/orc"
bucket = "oss://tyrantlucifer-image-bed"
access_key = "xxxxxxxxxxxxxxxxx"
access_secret = "xxxxxxxxxxxxxxxxxxxxxx"
endpoint = "oss-cn-beijing.aliyuncs.com"
file_format_type = "orc"
}
}
# Console printing of the read Oss data
sink {
Console {
}
}
# Set the basic configuration of the task to be performed
env {
parallelism = 1
job.mode = "BATCH"
}
# Create a source to connect to Oss
source {
OssFile {
path = "/seatunnel/json"
bucket = "oss://tyrantlucifer-image-bed"
access_key = "xxxxxxxxxxxxxxxxx"
access_secret = "xxxxxxxxxxxxxxxxxxxxxx"
endpoint = "oss-cn-beijing.aliyuncs.com"
file_format_type = "json"
schema {
fields {
id = int
name = string
}
}
}
}
# Console printing of the read Oss data
sink {
Console {
}
}
Multiple Table
No need to config schema file type, eg: orc.
env {
parallelism = 1
spark.app.name = "SeaTunnel"
spark.executor.instances = 2
spark.executor.cores = 1
spark.executor.memory = "1g"
spark.master = local
job.mode = "BATCH"
}
source {
OssFile {
tables_configs = [
{
schema = {
table = "fake01"
}
bucket = "oss://whale-ops"
access_key = "xxxxxxxxxxxxxxxxxxx"
access_secret = "xxxxxxxxxxxxxxxxxxx"
endpoint = "https://oss-accelerate.aliyuncs.com"
path = "/test/seatunnel/read/orc"
file_format_type = "orc"
},
{
schema = {
table = "fake02"
}
bucket = "oss://whale-ops"
access_key = "xxxxxxxxxxxxxxxxxxx"
access_secret = "xxxxxxxxxxxxxxxxxxx"
endpoint = "https://oss-accelerate.aliyuncs.com"
path = "/test/seatunnel/read/orc"
file_format_type = "orc"
}
]
result_table_name = "fake"
}
}
sink {
Assert {
rules {
table-names = ["fake01", "fake02"]
}
}
}
Need config schema file type, eg: json
env {
execution.parallelism = 1
spark.app.name = "SeaTunnel"
spark.executor.instances = 2
spark.executor.cores = 1
spark.executor.memory = "1g"
spark.master = local
job.mode = "BATCH"
}
source {
OssFile {
tables_configs = [
{
bucket = "oss://whale-ops"
access_key = "xxxxxxxxxxxxxxxxxxx"
access_secret = "xxxxxxxxxxxxxxxxxxx"
endpoint = "https://oss-accelerate.aliyuncs.com"
path = "/test/seatunnel/read/json"
file_format_type = "json"
schema = {
table = "fake01"
fields {
c_map = "map<string, string>"
c_array = "array<int>"
c_string = string
c_boolean = boolean
c_tinyint = tinyint
c_smallint = smallint
c_int = int
c_bigint = bigint
c_float = float
c_double = double
c_bytes = bytes
c_date = date
c_decimal = "decimal(38, 18)"
c_timestamp = timestamp
c_row = {
C_MAP = "map<string, string>"
C_ARRAY = "array<int>"
C_STRING = string
C_BOOLEAN = boolean
C_TINYINT = tinyint
C_SMALLINT = smallint
C_INT = int
C_BIGINT = bigint
C_FLOAT = float
C_DOUBLE = double
C_BYTES = bytes
C_DATE = date
C_DECIMAL = "decimal(38, 18)"
C_TIMESTAMP = timestamp
}
}
}
},
{
bucket = "oss://whale-ops"
access_key = "xxxxxxxxxxxxxxxxxxx"
access_secret = "xxxxxxxxxxxxxxxxxxx"
endpoint = "https://oss-accelerate.aliyuncs.com"
path = "/test/seatunnel/read/json"
file_format_type = "json"
schema = {
table = "fake02"
fields {
c_map = "map<string, string>"
c_array = "array<int>"
c_string = string
c_boolean = boolean
c_tinyint = tinyint
c_smallint = smallint
c_int = int
c_bigint = bigint
c_float = float
c_double = double
c_bytes = bytes
c_date = date
c_decimal = "decimal(38, 18)"
c_timestamp = timestamp
c_row = {
C_MAP = "map<string, string>"
C_ARRAY = "array<int>"
C_STRING = string
C_BOOLEAN = boolean
C_TINYINT = tinyint
C_SMALLINT = smallint
C_INT = int
C_BIGINT = bigint
C_FLOAT = float
C_DOUBLE = double
C_BYTES = bytes
C_DATE = date
C_DECIMAL = "decimal(38, 18)"
C_TIMESTAMP = timestamp
}
}
}
}
]
result_table_name = "fake"
}
}
sink {
Assert {
rules {
table-names = ["fake01", "fake02"]
}
}
}
Changelog
2.2.0-beta 2022-09-26
- Add OSS File Source Connector
2.3.0-beta 2022-10-20
- [BugFix] Fix the bug of incorrect path in windows environment (2980)
- [Improve] Support extract partition from SeaTunnelRow fields (3085)
- [Improve] Support parse field from file path (2985)