Clickhouse
Clickhouse sink connector
Support Those Engines
Spark
Flink
SeaTunnel Zeta
Key Features
The Clickhouse sink plug-in can achieve accuracy once by implementing idempotent writing, and needs to cooperate with aggregatingmergetree and other engines that support deduplication.
Description
Used to write data to Clickhouse.
Supported DataSource Info
In order to use the Clickhouse connector, the following dependencies are required. They can be downloaded via install-plugin.sh or from the Maven central repository.
Datasource | Supported Versions | Dependency |
---|---|---|
Clickhouse | universal | Download |
Data Type Mapping
SeaTunnel Data Type | Clickhouse Data Type |
---|---|
STRING | String / Int128 / UInt128 / Int256 / UInt256 / Point / Ring / Polygon MultiPolygon |
INT | Int8 / UInt8 / Int16 / UInt16 / Int32 |
BIGINT | UInt64 / Int64 / IntervalYear / IntervalQuarter / IntervalMonth / IntervalWeek / IntervalDay / IntervalHour / IntervalMinute / IntervalSecond |
DOUBLE | Float64 |
DECIMAL | Decimal |
FLOAT | Float32 |
DATE | Date |
TIME | DateTime |
ARRAY | Array |
MAP | Map |
Sink Options
Name | Type | Required | Default | Description |
---|---|---|---|---|
host | String | Yes | - | ClickHouse cluster address, the format is host:port , allowing multiple hosts to be specified. Such as "host1:8123,host2:8123" . |
database | String | Yes | - | The ClickHouse database. |
table | String | Yes | - | The table name. |
username | String | Yes | - | ClickHouse user username. |
password | String | Yes | - | ClickHouse user password. |
clickhouse.config | Map | No | In addition to the above mandatory parameters that must be specified by clickhouse-jdbc , users can also specify multiple optional parameters, which cover all the parameters provided by clickhouse-jdbc . | |
bulk_size | String | No | 20000 | The number of rows written through Clickhouse-jdbc each time, the default is 20000 . |
split_mode | String | No | false | This mode only support clickhouse table which engine is 'Distributed'.And internal_replication option-should be true .They will split distributed table data in seatunnel and perform write directly on each shard. The shard weight define is clickhouse will counted. |
sharding_key | String | No | - | When use split_mode, which node to send data to is a problem, the default is random selection, but the 'sharding_key' parameter can be used to specify the field for the sharding algorithm. This option only worked when 'split_mode' is true. |
primary_key | String | No | - | Mark the primary key column from clickhouse table, and based on primary key execute INSERT/UPDATE/DELETE to clickhouse table. |
support_upsert | Boolean | No | false | Support upsert row by query primary key. |
allow_experimental_lightweight_delete | Boolean | No | false | Allow experimental lightweight delete based on *MergeTree table engine. |
schema_save_mode | Enum | no | CREATE_SCHEMA_WHEN_NOT_EXIST | Schema save mode. Please refer to the schema_save_mode section below. |
data_save_mode | Enum | no | APPEND_DATA | Data save mode. Please refer to the data_save_mode section below. |
save_mode_create_template | string | no | see below | See below. |
common-options | No | - | Sink plugin common parameters, please refer to Sink Common Options for details. |
schema_save_mode[Enum]
Before starting the synchronization task, choose different processing options for the existing table schema.
Option descriptions:
RECREATE_SCHEMA
: Create the table if it does not exist; drop and recreate the table when saving.
CREATE_SCHEMA_WHEN_NOT_EXIST
: Create the table if it does not exist; skip if the table already exists.
ERROR_WHEN_SCHEMA_NOT_EXIST
: Throw an error if the table does not exist.
IGNORE
: Ignore the processing of the table.
data_save_mode[Enum]
Before starting the synchronization task, choose different processing options for the existing data on the target side.
Option descriptions:
DROP_DATA
: Retain the database schema but delete the data.
APPEND_DATA
: Retain the database schema and the data.
CUSTOM_PROCESSING
: Custom user-defined processing.
ERROR_WHEN_DATA_EXISTS
: Throw an error if data exists.
save_mode_create_template
Automatically create Doris tables using templates.
The table creation statements will be generated based on the upstream data types and schema. The default template can be modified as needed.
Default template:
CREATE TABLE IF NOT EXISTS `${database}`.`${table}` (
${rowtype_primary_key},
${rowtype_fields}
) ENGINE = MergeTree()
ORDER BY (${rowtype_primary_key})
PRIMARY KEY (${rowtype_primary_key})
SETTINGS
index_granularity = 8192;
If custom fields are added to the template, for example, adding an id
field:
CREATE TABLE IF NOT EXISTS `${database}`.`${table}` (
id,
${rowtype_fields}
) ENGINE = MergeTree()
ORDER BY (${rowtype_primary_key})
PRIMARY KEY (${rowtype_primary_key})
SETTINGS
index_granularity = 8192;
The connector will automatically retrieve the corresponding types from the upstream source and fill in the template, removing the id
field from the rowtype_fields
. This method can be used to modify custom field types and attributes.
The following placeholders can be used:
database
: Retrieves the database from the upstream schema.table_name
: Retrieves the table name from the upstream schema.rowtype_fields
: Retrieves all fields from the upstream schema and automatically maps them to Doris field descriptions.rowtype_primary_key
: Retrieves the primary key from the upstream schema (this may be a list).rowtype_unique_key
: Retrieves the unique key from the upstream schema (this may be a list).
How to Create a Clickhouse Data Synchronization Jobs
The following example demonstrates how to create a data synchronization job that writes randomly generated data to a Clickhouse database:
# Set the basic configuration of the task to be performed
env {
parallelism = 1
job.mode = "BATCH"
checkpoint.interval = 1000
}
source {
FakeSource {
row.num = 2
bigint.min = 0
bigint.max = 10000000
split.num = 1
split.read-interval = 300
schema {
fields {
c_bigint = bigint
}
}
}
}
sink {
Clickhouse {
host = "127.0.0.1:9092"
database = "default"
table = "test"
username = "xxxxx"
password = "xxxxx"
}
}
Tips
1.SeaTunnel Deployment Document.
2.The table to be written to needs to be created in advance before synchronization.
3.When sink is writing to the ClickHouse table, you don't need to set its schema because the connector will query ClickHouse for the current table's schema information before writing.
Clickhouse Sink Config
sink {
Clickhouse {
host = "localhost:8123"
database = "default"
table = "fake_all"
username = "xxxxx"
password = "xxxxx"
clickhouse.config = {
max_rows_to_read = "100"
read_overflow_mode = "throw"
}
}
}
Split Mode
sink {
Clickhouse {
host = "localhost:8123"
database = "default"
table = "fake_all"
username = "xxxxx"
password = "xxxxx"
# split mode options
split_mode = true
sharding_key = "age"
}
}
CDC(Change data capture) Sink
sink {
Clickhouse {
host = "localhost:8123"
database = "default"
table = "fake_all"
username = "xxxxx"
password = "xxxxx"
# cdc options
primary_key = "id"
support_upsert = true
}
}
CDC(Change data capture) for *MergeTree engine
sink {
Clickhouse {
host = "localhost:8123"
database = "default"
table = "fake_all"
username = "xxxxx"
password = "xxxxx"
# cdc options
primary_key = "id"
support_upsert = true
allow_experimental_lightweight_delete = true
}
}