FakeSource
FakeSource connector
Support Those Engines​
Spark
Flink
SeaTunnel Zeta
Description​
The FakeSource is a virtual data source, which randomly generates the number of rows according to the data structure of the user-defined schema, just for some test cases such as type conversion or connector new feature testing
Key Features​
Source Options​
Name | Type | Required | Default | Description |
---|---|---|---|---|
tables_configs | list | no | - | Define Multiple FakeSource, each item can contains the whole fake source config description below |
schema | config | yes | - | Define Schema information |
rows | config | no | - | The row list of fake data output per degree of parallelism see title Options rows Case . |
row.num | int | no | 5 | The total number of data generated per degree of parallelism |
split.num | int | no | 1 | the number of splits generated by the enumerator for each degree of parallelism |
split.read-interval | long | no | 1 | The interval(mills) between two split reads in a reader |
map.size | int | no | 5 | The size of map type that connector generated |
array.size | int | no | 5 | The size of array type that connector generated |
bytes.length | int | no | 5 | The length of bytes type that connector generated |
string.length | int | no | 5 | The length of string type that connector generated |
string.fake.mode | string | no | range | The fake mode of generating string data, support range and template , default range ,if use configured it to template , user should also configured string.template option |
string.template | list | no | - | The template list of string type that connector generated, if user configured it, connector will randomly select an item from the template list |
tinyint.fake.mode | string | no | range | The fake mode of generating tinyint data, support range and template , default range ,if use configured it to template , user should also configured tinyint.template option |
tinyint.min | tinyint | no | 0 | The min value of tinyint data that connector generated |
tinyint.max | tinyint | no | 127 | The max value of tinyint data that connector generated |
tinyint.template | list | no | - | The template list of tinyint type that connector generated, if user configured it, connector will randomly select an item from the template list |
smallint.fake.mode | string | no | range | The fake mode of generating smallint data, support range and template , default range ,if use configured it to template , user should also configured smallint.template option |
smallint.min | smallint | no | 0 | The min value of smallint data that connector generated |
smallint.max | smallint | no | 32767 | The max value of smallint data that connector generated |
smallint.template | list | no | - | The template list of smallint type that connector generated, if user configured it, connector will randomly select an item from the template list |
int.fake.template | string | no | range | The fake mode of generating int data, support range and template , default range ,if use configured it to template , user should also configured int.template option |
int.min | int | no | 0 | The min value of int data that connector generated |
int.max | int | no | 0x7fffffff | The max value of int data that connector generated |
int.template | list | no | - | The template list of int type that connector generated, if user configured it, connector will randomly select an item from the template list |
bigint.fake.mode | string | no | range | The fake mode of generating bigint data, support range and template , default range ,if use configured it to template , user should also configured bigint.template option |
bigint.min | bigint | no | 0 | The min value of bigint data that connector generated |
bigint.max | bigint | no | 0x7fffffffffffffff | The max value of bigint data that connector generated |
bigint.template | list | no | - | The template list of bigint type that connector generated, if user configured it, connector will randomly select an item from the template list |
float.fake.mode | string | no | range | The fake mode of generating float data, support range and template , default range ,if use configured it to template , user should also configured float.template option |
float.min | float | no | 0 | The min value of float data that connector generated |
float.max | float | no | 0x1.fffffeP+127 | The max value of float data that connector generated |
float.template | list | no | - | The template list of float type that connector generated, if user configured it, connector will randomly select an item from the template list |
double.fake.mode | string | no | range | The fake mode of generating float data, support range and template , default range ,if use configured it to template , user should also configured double.template option |
double.min | double | no | 0 | The min value of double data that connector generated |
double.max | double | no | 0x1.fffffffffffffP+1023 | The max value of double data that connector generated |
double.template | list | no | - | The template list of double type that connector generated, if user configured it, connector will randomly select an item from the template list |
vector.dimension | int | no | 4 | Dimension of the generated vector, excluding binary vectors |
binary.vector.dimension | int | no | 8 | Dimension of the generated binary vector |
vector.float.min | float | no | 0 | The min value of float data in vector that connector generated |
vector.float.max | float | no | 0x1.fffffeP+127 | The max value of float data in vector that connector generated |
common-options | no | - | Source plugin common parameters, please refer to Source Common Options for details |
Task Example​
Simple:​
This example Randomly generates data of a specified type. If you want to learn how to declare field types, click here.
schema = {
fields {
c_map = "map<string, array<int>>"
c_map_nest = "map<string, {c_int = int, c_string = string}>"
c_array = "array<int>"
c_string = string
c_boolean = boolean
c_tinyint = tinyint
c_smallint = smallint
c_int = int
c_bigint = bigint
c_float = float
c_double = double
c_decimal = "decimal(30, 8)"
c_null = "null"
c_bytes = bytes
c_date = date
c_timestamp = timestamp
c_row = {
c_map = "map<string, map<string, string>>"
c_array = "array<int>"
c_string = string
c_boolean = boolean
c_tinyint = tinyint
c_smallint = smallint
c_int = int
c_bigint = bigint
c_float = float
c_double = double
c_decimal = "decimal(30, 8)"
c_null = "null"
c_bytes = bytes
c_date = date
c_timestamp = timestamp
}
}
}
Random Generation​
16 data matching the type are randomly generated
source {
# This is a example input plugin **only for test and demonstrate the feature input plugin**
FakeSource {
row.num = 16
schema = {
fields {
c_map = "map<string, string>"
c_array = "array<int>"
c_string = string
c_boolean = boolean
c_tinyint = tinyint
c_smallint = smallint
c_int = int
c_bigint = bigint
c_float = float
c_double = double
c_decimal = "decimal(30, 8)"
c_null = "null"
c_bytes = bytes
c_date = date
c_timestamp = timestamp
}
}
result_table_name = "fake"
}
}
Customize the data content Simple:​
This is a self-defining data source information, defining whether each piece of data is an add or delete modification operation, and defining what each field stores
source {
FakeSource {
schema = {
fields {
c_map = "map<string, string>"
c_array = "array<int>"
c_string = string
c_boolean = boolean
c_tinyint = tinyint
c_smallint = smallint
c_int = int
c_bigint = bigint
c_float = float
c_double = double
c_decimal = "decimal(30, 8)"
c_null = "null"
c_bytes = bytes
c_date = date
c_timestamp = timestamp
}
}
rows = [
{
kind = INSERT
fields = [{"a": "b"}, [101], "c_string", true, 117, 15987, 56387395, 7084913402530365000, 1.23, 1.23, "2924137191386439303744.39292216", null, "bWlJWmo=", "2023-04-22", "2023-04-22T23:20:58"]
}
{
kind = UPDATE_BEFORE
fields = [{"a": "c"}, [102], "c_string", true, 117, 15987, 56387395, 7084913402530365000, 1.23, 1.23, "2924137191386439303744.39292216", null, "bWlJWmo=", "2023-04-22", "2023-04-22T23:20:58"]
}
{
kind = UPDATE_AFTER
fields = [{"a": "e"}, [103], "c_string", true, 117, 15987, 56387395, 7084913402530365000, 1.23, 1.23, "2924137191386439303744.39292216", null, "bWlJWmo=", "2023-04-22", "2023-04-22T23:20:58"]
}
{
kind = DELETE
fields = [{"a": "f"}, [104], "c_string", true, 117, 15987, 56387395, 7084913402530365000, 1.23, 1.23, "2924137191386439303744.39292216", null, "bWlJWmo=", "2023-04-22", "2023-04-22T23:20:58"]
}
]
}
}
Due to the constraints of the HOCON specification, users cannot directly create byte sequence objects. FakeSource uses strings to assign
bytes
type values. In the example above, thebytes
type field is assigned"bWlJWmo="
, which is encoded from "miIZj" with base64. Hence, when assigning values tobytes
type fields, please use strings encoded with base64.
Specified Data number Simple:​
This case specifies the number of data generated and the length of the generated value
FakeSource {
row.num = 10
map.size = 10
array.size = 10
bytes.length = 10
string.length = 10
schema = {
fields {
c_map = "map<string, array<int>>"
c_array = "array<int>"
c_string = string
c_boolean = boolean
c_tinyint = tinyint
c_smallint = smallint
c_int = int
c_bigint = bigint
c_float = float
c_double = double
c_decimal = "decimal(30, 8)"
c_null = "null"
c_bytes = bytes
c_date = date
c_timestamp = timestamp
c_row = {
c_map = "map<string, map<string, string>>"
c_array = "array<int>"
c_string = string
c_boolean = boolean
c_tinyint = tinyint
c_smallint = smallint
c_int = int
c_bigint = bigint
c_float = float
c_double = double
c_decimal = "decimal(30, 8)"
c_null = "null"
c_bytes = bytes
c_date = date
c_timestamp = timestamp
}
}
}
}
Template data Simple:​
Randomly generated according to the specified template
Using template
FakeSource {
row.num = 5
string.fake.mode = "template"
string.template = ["tyrantlucifer", "hailin", "kris", "fanjia", "zongwen", "gaojun"]
tinyint.fake.mode = "template"
tinyint.template = [1, 2, 3, 4, 5, 6, 7, 8, 9]
smalling.fake.mode = "template"
smallint.template = [10, 11, 12, 13, 14, 15, 16, 17, 18, 19]
int.fake.mode = "template"
int.template = [20, 21, 22, 23, 24, 25, 26, 27, 28, 29]
bigint.fake.mode = "template"
bigint.template = [30, 31, 32, 33, 34, 35, 36, 37, 38, 39]
float.fake.mode = "template"
float.template = [40.0, 41.0, 42.0, 43.0]
double.fake.mode = "template"
double.template = [44.0, 45.0, 46.0, 47.0]
schema {
fields {
c_string = string
c_tinyint = tinyint
c_smallint = smallint
c_int = int
c_bigint = bigint
c_float = float
c_double = double
}
}
}
Range data Simple:​
The specified data generation range is randomly generated
FakeSource {
row.num = 5
string.template = ["tyrantlucifer", "hailin", "kris", "fanjia", "zongwen", "gaojun"]
tinyint.min = 1
tinyint.max = 9
smallint.min = 10
smallint.max = 19
int.min = 20
int.max = 29
bigint.min = 30
bigint.max = 39
float.min = 40.0
float.max = 43.0
double.min = 44.0
double.max = 47.0
schema {
fields {
c_string = string
c_tinyint = tinyint
c_smallint = smallint
c_int = int
c_bigint = bigint
c_float = float
c_double = double
}
}
}
Generate Multiple tables​
This is a case of generating a multi-data source test.table1 and test.table2
FakeSource {
tables_configs = [
{
row.num = 16
schema {
table = "test.table1"
fields {
c_string = string
c_tinyint = tinyint
c_smallint = smallint
c_int = int
c_bigint = bigint
c_float = float
c_double = double
}
}
},
{
row.num = 17
schema {
table = "test.table2"
fields {
c_string = string
c_tinyint = tinyint
c_smallint = smallint
c_int = int
c_bigint = bigint
c_float = float
c_double = double
}
}
}
]
}
Options rows
Case​
rows = [
{
kind = INSERT
fields = [1, "A", 100]
},
{
kind = UPDATE_BEFORE
fields = [1, "A", 100]
},
{
kind = UPDATE_AFTER
fields = [1, "A_1", 100]
},
{
kind = DELETE
fields = [1, "A_1", 100]
}
]
Options table-names
Case​
source {
# This is a example source plugin **only for test and demonstrate the feature source plugin**
FakeSource {
table-names = ["test.table1", "test.table2", "test.table3"]
parallelism = 1
schema = {
fields {
name = "string"
age = "int"
}
}
}
}
Use Vector Example​
source {
FakeSource {
row.num = 10
vector.dimension= 4
binary.vector.dimension = 8
schema = {
table = "simple_example"
columns = [
{
name = book_id
type = bigint
nullable = false
defaultValue = 0
comment = "primary key id"
},
{
name = book_intro_1
type = binary_vector
columnScale =8
comment = "vector"
},
{
name = book_intro_2
type = float16_vector
columnScale =4
comment = "vector"
},
{
name = book_intro_3
type = bfloat16_vector
columnScale =4
comment = "vector"
},
{
name = book_intro_4
type = sparse_float_vector
columnScale =4
comment = "vector"
}
]
}
}
}
ps: columnScale needs to be improved in schema-feature , used to specify the dimension of vectors and precision of float. For details, see here
Changelog​
2.2.0-beta 2022-09-26​
- Add FakeSource Source Connector
2.3.0-beta 2022-10-20​
- [Improve] Supports direct definition of data values(row) (2839)
- [Improve] Improve fake source connector: (2944)
- Support user-defined map size
- Support user-defined array size
- Support user-defined string length
- Support user-defined bytes length
- [Improve] Support multiple splits for fake source connector (2974)
- [Improve] Supports setting the number of splits per parallelism and the reading interval between two splits (3098)