Skip to main content
Version: Next

Kafka

Kafka source connector

Support Those Engines

Spark
Flink
Seatunnel Zeta

Key Features

Description

Source connector for Apache Kafka.

Supported DataSource Info

In order to use the Kafka connector, the following dependencies are required. They can be downloaded via install-plugin.sh or from the Maven central repository.

DatasourceSupported VersionsMaven
KafkaUniversalDownload

Source Options

NameTypeRequiredDefaultDescription
topicStringYes-Topic name(s) to read data from when the table is used as source. It also supports topic list for source by separating topic by comma like 'topic-1,topic-2'.
table_listMapNo-Topic list config You can configure only one table_list and one topic at the same time
bootstrap.serversStringYes-Comma separated list of Kafka brokers.
patternBooleanNofalseIf pattern is set to true,the regular expression for a pattern of topic names to read from. All topics in clients with names that match the specified regular expression will be subscribed by the consumer.
consumer.groupStringNoSeaTunnel-Consumer-GroupKafka consumer group id, used to distinguish different consumer groups.
commit_on_checkpointBooleanNotrueIf true the consumer's offset will be periodically committed in the background.
poll.timeoutLongNo10000The interval(millis) for poll messages.
kafka.configMapNo-In addition to the above necessary parameters that must be specified by the Kafka consumer client, users can also specify multiple consumer client non-mandatory parameters, covering all consumer parameters specified in the official Kafka document.
schemaConfigNo-The structure of the data, including field names and field types.
formatStringNojsonData format. The default format is json. Optional text format, canal_json, debezium_json, maxwell_json, ogg_json, avro and protobuf. If you use json or text format. The default field separator is ", ". If you customize the delimiter, add the "field_delimiter" option.If you use canal format, please refer to canal-json for details.If you use debezium format, please refer to debezium-json for details. Some format details please refer formats
format_error_handle_wayStringNofailThe processing method of data format error. The default value is fail, and the optional value is (fail, skip). When fail is selected, data format error will block and an exception will be thrown. When skip is selected, data format error will skip this line data.
field_delimiterStringNo,Customize the field delimiter for data format.
start_modeStartMode[earliest],[group_offsets],[latest],[specific_offsets],[timestamp]Nogroup_offsetsThe initial consumption pattern of consumers.
start_mode.offsetsConfigNo-The offset required for consumption mode to be specific_offsets.
start_mode.timestampLongNo-The time required for consumption mode to be "timestamp".
partition-discovery.interval-millisLongNo-1The interval for dynamically discovering topics and partitions.
common-optionsNo-Source plugin common parameters, please refer to Source Common Options for details
protobuf_message_nameStringNo-Effective when the format is set to protobuf, specifies the Message name
protobuf_schemaStringNo-Effective when the format is set to protobuf, specifies the Schema definition

Task Example

Simple

This example reads the data of kafka's topic_1, topic_2, topic_3 and prints it to the client.And if you have not yet installed and deployed SeaTunnel, you need to follow the instructions in Install SeaTunnel to install and deploy SeaTunnel. And if you have not yet installed and deployed SeaTunnel, you need to follow the instructions in Install SeaTunnel to install and deploy SeaTunnel. And then follow the instructions in Quick Start With SeaTunnel Engine to run this job. In batch mode, during the enumerator sharding process, it will fetch the latest offset for each partition and use it as the stopping point.

# Defining the runtime environment
env {
parallelism = 2
job.mode = "BATCH"
}
source {
Kafka {
schema = {
fields {
name = "string"
age = "int"
}
}
format = text
field_delimiter = "#"
topic = "topic_1,topic_2,topic_3"
bootstrap.servers = "localhost:9092"
kafka.config = {
client.id = client_1
max.poll.records = 500
auto.offset.reset = "earliest"
enable.auto.commit = "false"
}
}
}
sink {
Console {}
}

Regex Topic

source {
Kafka {
topic = ".*seatunnel*."
pattern = "true"
bootstrap.servers = "localhost:9092"
consumer.group = "seatunnel_group"
}
}

AWS MSK SASL/SCRAM

Replace the following ${username} and ${password} with the configuration values in AWS MSK.

source {
Kafka {
topic = "seatunnel"
bootstrap.servers = "xx.amazonaws.com.cn:9096,xxx.amazonaws.com.cn:9096,xxxx.amazonaws.com.cn:9096"
consumer.group = "seatunnel_group"
kafka.config = {
security.protocol=SASL_SSL
sasl.mechanism=SCRAM-SHA-512
sasl.jaas.config="org.apache.kafka.common.security.scram.ScramLoginModule required username=\"username\" password=\"password\";"
#security.protocol=SASL_SSL
#sasl.mechanism=AWS_MSK_IAM
#sasl.jaas.config="software.amazon.msk.auth.iam.IAMLoginModule required;"
#sasl.client.callback.handler.class="software.amazon.msk.auth.iam.IAMClientCallbackHandler"
}
}
}

AWS MSK IAM

Download aws-msk-iam-auth-1.1.5.jar from https://github.com/aws/aws-msk-iam-auth/releases and put it in $SEATUNNEL_HOME/plugin/kafka/lib dir.

Please ensure the IAM policy have "kafka-cluster:Connect",. Like this:

"Effect": "Allow",
"Action": [
"kafka-cluster:Connect",
"kafka-cluster:AlterCluster",
"kafka-cluster:DescribeCluster"
],

Source Config

source {
Kafka {
topic = "seatunnel"
bootstrap.servers = "xx.amazonaws.com.cn:9098,xxx.amazonaws.com.cn:9098,xxxx.amazonaws.com.cn:9098"
consumer.group = "seatunnel_group"
kafka.config = {
#security.protocol=SASL_SSL
#sasl.mechanism=SCRAM-SHA-512
#sasl.jaas.config="org.apache.kafka.common.security.scram.ScramLoginModule required username=\"username\" password=\"password\";"
security.protocol=SASL_SSL
sasl.mechanism=AWS_MSK_IAM
sasl.jaas.config="software.amazon.msk.auth.iam.IAMLoginModule required;"
sasl.client.callback.handler.class="software.amazon.msk.auth.iam.IAMClientCallbackHandler"
}
}
}

Kerberos Authentication Example

Source Config

source {
Kafka {
topic = "seatunnel"
bootstrap.servers = "127.0.0.1:9092"
consumer.group = "seatunnel_group"
kafka.config = {
security.protocol=SASL_PLAINTEXT
sasl.kerberos.service.name=kafka
sasl.mechanism=GSSAPI
java.security.krb5.conf="/etc/krb5.conf"
sasl.jaas.config="com.sun.security.auth.module.Krb5LoginModule required \n useKeyTab=true \n storeKey=true \n keyTab=\"/path/to/xxx.keytab\" \n principal=\"user@xxx.com\";"
}
}
}

Multiple Kafka Source

This is written to the same pg table according to different formats and topics of parsing kafka Perform upsert operations based on the id

Note: Kafka is an unstructured data source and should be use 'tables_configs', and 'table_list' will be removed in the future.


env {
execution.parallelism = 1
job.mode = "BATCH"
}

source {
Kafka {
bootstrap.servers = "kafka_e2e:9092"
tables_configs = [
{
topic = "^test-ogg-sou.*"
pattern = "true"
consumer.group = "ogg_multi_group"
start_mode = earliest
schema = {
fields {
id = "int"
name = "string"
description = "string"
weight = "string"
}
},
format = ogg_json
},
{
topic = "test-cdc_mds"
start_mode = earliest
schema = {
fields {
id = "int"
name = "string"
description = "string"
weight = "string"
}
},
format = canal_json
}
]
}
}

sink {
Jdbc {
driver = org.postgresql.Driver
url = "jdbc:postgresql://postgresql:5432/test?loggerLevel=OFF"
user = test
password = test
generate_sink_sql = true
database = test
table = public.sink
primary_keys = ["id"]
}
}

env {
execution.parallelism = 1
job.mode = "BATCH"
}

source {
Kafka {
bootstrap.servers = "kafka_e2e:9092"
table_list = [
{
topic = "^test-ogg-sou.*"
pattern = "true"
consumer.group = "ogg_multi_group"
start_mode = earliest
schema = {
fields {
id = "int"
name = "string"
description = "string"
weight = "string"
}
},
format = ogg_json
},
{
topic = "test-cdc_mds"
start_mode = earliest
schema = {
fields {
id = "int"
name = "string"
description = "string"
weight = "string"
}
},
format = canal_json
}
]
}
}

sink {
Jdbc {
driver = org.postgresql.Driver
url = "jdbc:postgresql://postgresql:5432/test?loggerLevel=OFF"
user = test
password = test
generate_sink_sql = true
database = test
table = public.sink
primary_keys = ["id"]
}
}

Protobuf configuration

Set format to protobuf, configure protobuf data structure, protobuf_message_name and protobuf_schema parameters

Example:

source {
Kafka {
topic = "test_protobuf_topic_fake_source"
format = protobuf
protobuf_message_name = Person
protobuf_schema = """
syntax = "proto3";

package org.apache.seatunnel.format.protobuf;

option java_outer_classname = "ProtobufE2E";

message Person {
int32 c_int32 = 1;
int64 c_int64 = 2;
float c_float = 3;
double c_double = 4;
bool c_bool = 5;
string c_string = 6;
bytes c_bytes = 7;

message Address {
string street = 1;
string city = 2;
string state = 3;
string zip = 4;
}

Address address = 8;

map<string, float> attributes = 9;

repeated string phone_numbers = 10;
}
"""
bootstrap.servers = "kafkaCluster:9092"
start_mode = "earliest"
plugin_output = "kafka_table"
}
}