OssFile
Oss file source connector
Support Those Engines
Spark
Flink
SeaTunnel Zeta
Usage Dependency
For Spark/Flink Engine
- You must ensure your spark/flink cluster already integrated hadoop. The tested hadoop version is 2.x.
- You must ensure
hadoop-aliyun-xx.jar
,aliyun-sdk-oss-xx.jar
andjdom-xx.jar
in${SEATUNNEL_HOME}/plugins/
dir and the version ofhadoop-aliyun
jar need equals your hadoop version which used in spark/flink andaliyun-sdk-oss-xx.jar
andjdom-xx.jar
version needs to be the version corresponding to thehadoop-aliyun
version. Eg:hadoop-aliyun-3.1.4.jar
dependencyaliyun-sdk-oss-3.4.1.jar
andjdom-1.1.jar
.
For SeaTunnel Zeta Engine
- You must ensure
seatunnel-hadoop3-3.1.4-uber.jar
,aliyun-sdk-oss-3.4.1.jar
,hadoop-aliyun-3.1.4.jar
andjdom-1.1.jar
in${SEATUNNEL_HOME}/lib/
dir.
Key features
Read all the data in a split in a pollNext call. What splits are read will be saved in snapshot.
- column projection
- parallelism
- support user-defined split
- file format type
- text
- csv
- parquet
- orc
- json
- excel
- xml
- binary
Data Type Mapping
Data type mapping is related to the type of file being read, We supported as the following file types:
text
csv
parquet
orc
json
excel
xml
JSON File Type
If you assign file type to json
, you should also assign schema option to tell connector how to parse data to the row you want.
For example:
upstream data is the following:
{"code": 200, "data": "get success", "success": true}
You can also save multiple pieces of data in one file and split them by newline:
{"code": 200, "data": "get success", "success": true}
{"code": 300, "data": "get failed", "success": false}
you should assign schema as the following:
schema {
fields {
code = int
data = string
success = boolean
}
}
connector will generate data as the following:
code | data | success |
---|---|---|
200 | get success | true |
Text Or CSV File Type
If you assign file type to text
csv
, you can choose to specify the schema information or not.
For example, upstream data is the following:
tyrantlucifer#26#male
If you do not assign data schema connector will treat the upstream data as the following:
content |
---|
tyrantlucifer#26#male |
If you assign data schema, you should also assign the option field_delimiter
too except CSV file type
you should assign schema and delimiter as the following:
field_delimiter = "#"
schema {
fields {
name = string
age = int
gender = string
}
}
connector will generate data as the following:
name | age | gender |
---|---|---|
tyrantlucifer | 26 | male |
Orc File Type
If you assign file type to parquet
orc
, schema option not required, connector can find the schema of upstream data automatically.
Orc Data type | SeaTunnel Data type |
---|---|
BOOLEAN | BOOLEAN |
INT | INT |
BYTE | BYTE |
SHORT | SHORT |
LONG | LONG |
FLOAT | FLOAT |
DOUBLE | DOUBLE |
BINARY | BINARY |
STRING VARCHAR CHAR | STRING |
DATE | LOCAL_DATE_TYPE |
TIMESTAMP | LOCAL_DATE_TIME_TYPE |
DECIMAL | DECIMAL |
LIST(STRING) | STRING_ARRAY_TYPE |
LIST(BOOLEAN) | BOOLEAN_ARRAY_TYPE |
LIST(TINYINT) | BYTE_ARRAY_TYPE |
LIST(SMALLINT) | SHORT_ARRAY_TYPE |
LIST(INT) | INT_ARRAY_TYPE |
LIST(BIGINT) | LONG_ARRAY_TYPE |
LIST(FLOAT) | FLOAT_ARRAY_TYPE |
LIST(DOUBLE) | DOUBLE_ARRAY_TYPE |
Map<K,V> | MapType, This type of K and V will transform to SeaTunnel type |
STRUCT | SeaTunnelRowType |
Parquet File Type
If you assign file type to parquet
orc
, schema option not required, connector can find the schema of upstream data automatically.
Orc Data type | SeaTunnel Data type |
---|---|
INT_8 | BYTE |
INT_16 | SHORT |
DATE | DATE |
TIMESTAMP_MILLIS | TIMESTAMP |
INT64 | LONG |
INT96 | TIMESTAMP |
BINARY | BYTES |
FLOAT | FLOAT |
DOUBLE | DOUBLE |
BOOLEAN | BOOLEAN |
FIXED_LEN_BYTE_ARRAY | TIMESTAMP DECIMAL |
DECIMAL | DECIMAL |
LIST(STRING) | STRING_ARRAY_TYPE |
LIST(BOOLEAN) | BOOLEAN_ARRAY_TYPE |
LIST(TINYINT) | BYTE_ARRAY_TYPE |
LIST(SMALLINT) | SHORT_ARRAY_TYPE |
LIST(INT) | INT_ARRAY_TYPE |
LIST(BIGINT) | LONG_ARRAY_TYPE |
LIST(FLOAT) | FLOAT_ARRAY_TYPE |
LIST(DOUBLE) | DOUBLE_ARRAY_TYPE |
Map<K,V> | MapType, This type of K and V will transform to SeaTunnel type |
STRUCT | SeaTunnelRowType |
Options
name | type | required | default value | Description |
---|---|---|---|---|
path | string | yes | - | The Oss path that needs to be read can have sub paths, but the sub paths need to meet certain format requirements. Specific requirements can be referred to "parse_partition_from_path" option |
file_format_type | string | yes | - | File type, supported as the following file types: text csv parquet orc json excel xml binary |
bucket | string | yes | - | The bucket address of oss file system, for example: oss://seatunnel-test . |
endpoint | string | yes | - | fs oss endpoint |
read_columns | list | no | - | The read column list of the data source, user can use it to implement field projection. The file type supported column projection as the following shown: text csv parquet orc json excel xml . If the user wants to use this feature when reading text json csv files, the "schema" option must be configured. |
access_key | string | no | - | |
access_secret | string | no | - | |
delimiter | string | no | \001 | Field delimiter, used to tell connector how to slice and dice fields when reading text files. Default \001 , the same as hive's default delimiter. |
parse_partition_from_path | boolean | no | true | Control whether parse the partition keys and values from file path. For example if you read a file from path oss://hadoop-cluster/tmp/seatunnel/parquet/name=tyrantlucifer/age=26 . Every record data from file will be added these two fields: name="tyrantlucifer", age=16 |
date_format | string | no | yyyy-MM-dd | Date type format, used to tell connector how to convert string to date, supported as the following formats:yyyy-MM-dd yyyy.MM.dd yyyy/MM/dd . default yyyy-MM-dd |
datetime_format | string | no | yyyy-MM-dd HH:mm:ss | Datetime type format, used to tell connector how to convert string to datetime, supported as the following formats:yyyy-MM-dd HH:mm:ss yyyy.MM.dd HH:mm:ss yyyy/MM/dd HH:mm:ss yyyyMMddHHmmss |
time_format | string | no | HH:mm:ss | Time type format, used to tell connector how to convert string to time, supported as the following formats:HH:mm:ss HH:mm:ss.SSS |
skip_header_row_number | long | no | 0 | Skip the first few lines, but only for the txt and csv. For example, set like following:skip_header_row_number = 2 . Then SeaTunnel will skip the first 2 lines from source files |
schema | config | no | - | The schema of upstream data. |
sheet_name | string | no | - | Reader the sheet of the workbook,Only used when file_format is excel. |
xml_row_tag | string | no | - | Specifies the tag name of the data rows within the XML file, only used when file_format is xml. |
xml_use_attr_format | boolean | no | - | Specifies whether to process data using the tag attribute format, only used when file_format is xml. |
compress_codec | string | no | none | Which compress codec the files used. |
encoding | string | no | UTF-8 | |
null_format | string | no | - | Only used when file_format_type is text. null_format to define which strings can be represented as null. e.g: \N |
file_filter_pattern | string | no | Filter pattern, which used for filtering files. | |
common-options | config | no | - | Source plugin common parameters, please refer to Source Common Options for details. |
compress_codec [string]
The compress codec of files and the details that supported as the following shown:
- txt:
lzo
none
- json:
lzo
none
- csv:
lzo
none
- orc/parquet:
automatically recognizes the compression type, no additional settings required.
encoding [string]
Only used when file_format_type is json,text,csv,xml.
The encoding of the file to read. This param will be parsed by Charset.forName(encoding)
.
file_filter_pattern [string]
Filter pattern, which used for filtering files.
The pattern follows standard regular expressions. For details, please refer to https://en.wikipedia.org/wiki/Regular_expression. There are some examples.
File Structure Example:
/data/seatunnel/20241001/report.txt
/data/seatunnel/20241007/abch202410.csv
/data/seatunnel/20241002/abcg202410.csv
/data/seatunnel/20241005/old_data.csv
/data/seatunnel/20241012/logo.png
Matching Rules Example:
Example 1: Match all .txt files,Regular Expression:
/data/seatunnel/20241001/.*\.txt
The result of this example matching is:
/data/seatunnel/20241001/report.txt
Example 2: Match all file starting with abc,Regular Expression:
/data/seatunnel/20241002/abc.*
The result of this example matching is:
/data/seatunnel/20241007/abch202410.csv
/data/seatunnel/20241002/abcg202410.csv
Example 3: Match all file starting with abc,And the fourth character is either h or g, the Regular Expression:
/data/seatunnel/20241007/abc[h,g].*
The result of this example matching is:
/data/seatunnel/20241007/abch202410.csv
Example 4: Match third level folders starting with 202410 and files ending with .csv, the Regular Expression:
/data/seatunnel/202410\d*/.*\.csv
The result of this example matching is:
/data/seatunnel/20241007/abch202410.csv
/data/seatunnel/20241002/abcg202410.csv
/data/seatunnel/20241005/old_data.csv
schema [config]
Only need to be configured when the file_format_type are text, json, excel, xml or csv ( Or other format we can't read the schema from metadata).
fields [Config]
The schema of upstream data.
How to Create a Oss Data Synchronization Jobs
The following example demonstrates how to create a data synchronization job that reads data from Oss and prints it on the local client:
# Set the basic configuration of the task to be performed
env {
parallelism = 1
job.mode = "BATCH"
}
# Create a source to connect to Oss
source {
OssFile {
path = "/seatunnel/orc"
bucket = "oss://tyrantlucifer-image-bed"
access_key = "xxxxxxxxxxxxxxxxx"
access_secret = "xxxxxxxxxxxxxxxxxxxxxx"
endpoint = "oss-cn-beijing.aliyuncs.com"
file_format_type = "orc"
}
}
# Console printing of the read Oss data
sink {
Console {
}
}
# Set the basic configuration of the task to be performed
env {
parallelism = 1
job.mode = "BATCH"
}
# Create a source to connect to Oss
source {
OssFile {
path = "/seatunnel/json"
bucket = "oss://tyrantlucifer-image-bed"
access_key = "xxxxxxxxxxxxxxxxx"
access_secret = "xxxxxxxxxxxxxxxxxxxxxx"
endpoint = "oss-cn-beijing.aliyuncs.com"
file_format_type = "json"
schema {
fields {
id = int
name = string
}
}
}
}
# Console printing of the read Oss data
sink {
Console {
}
}
Multiple Table
No need to config schema file type, eg: orc
.
env {
parallelism = 1
spark.app.name = "SeaTunnel"
spark.executor.instances = 2
spark.executor.cores = 1
spark.executor.memory = "1g"
spark.master = local
job.mode = "BATCH"
}
source {
OssFile {
tables_configs = [
{
schema = {
table = "fake01"
}
bucket = "oss://whale-ops"
access_key = "xxxxxxxxxxxxxxxxxxx"
access_secret = "xxxxxxxxxxxxxxxxxxx"
endpoint = "https://oss-accelerate.aliyuncs.com"
path = "/test/seatunnel/read/orc"
file_format_type = "orc"
},
{
schema = {
table = "fake02"
}
bucket = "oss://whale-ops"
access_key = "xxxxxxxxxxxxxxxxxxx"
access_secret = "xxxxxxxxxxxxxxxxxxx"
endpoint = "https://oss-accelerate.aliyuncs.com"
path = "/test/seatunnel/read/orc"
file_format_type = "orc"
}
]
plugin_output = "fake"
}
}
sink {
Assert {
rules {
table-names = ["fake01", "fake02"]
}
}
}
Need config schema file type, eg: json
env {
execution.parallelism = 1
spark.app.name = "SeaTunnel"
spark.executor.instances = 2
spark.executor.cores = 1
spark.executor.memory = "1g"
spark.master = local
job.mode = "BATCH"
}
source {
OssFile {
tables_configs = [
{
bucket = "oss://whale-ops"
access_key = "xxxxxxxxxxxxxxxxxxx"
access_secret = "xxxxxxxxxxxxxxxxxxx"
endpoint = "https://oss-accelerate.aliyuncs.com"
path = "/test/seatunnel/read/json"
file_format_type = "json"
schema = {
table = "fake01"
fields {
c_map = "map<string, string>"
c_array = "array<int>"
c_string = string
c_boolean = boolean
c_tinyint = tinyint
c_smallint = smallint
c_int = int
c_bigint = bigint
c_float = float
c_double = double
c_bytes = bytes
c_date = date
c_decimal = "decimal(38, 18)"
c_timestamp = timestamp
c_row = {
C_MAP = "map<string, string>"
C_ARRAY = "array<int>"
C_STRING = string
C_BOOLEAN = boolean
C_TINYINT = tinyint
C_SMALLINT = smallint
C_INT = int
C_BIGINT = bigint
C_FLOAT = float
C_DOUBLE = double
C_BYTES = bytes
C_DATE = date
C_DECIMAL = "decimal(38, 18)"
C_TIMESTAMP = timestamp
}
}
}
},
{
bucket = "oss://whale-ops"
access_key = "xxxxxxxxxxxxxxxxxxx"
access_secret = "xxxxxxxxxxxxxxxxxxx"
endpoint = "https://oss-accelerate.aliyuncs.com"
path = "/test/seatunnel/read/json"
file_format_type = "json"
schema = {
table = "fake02"
fields {
c_map = "map<string, string>"
c_array = "array<int>"
c_string = string
c_boolean = boolean
c_tinyint = tinyint
c_smallint = smallint
c_int = int
c_bigint = bigint
c_float = float
c_double = double
c_bytes = bytes
c_date = date
c_decimal = "decimal(38, 18)"
c_timestamp = timestamp
c_row = {
C_MAP = "map<string, string>"
C_ARRAY = "array<int>"
C_STRING = string
C_BOOLEAN = boolean
C_TINYINT = tinyint
C_SMALLINT = smallint
C_INT = int
C_BIGINT = bigint
C_FLOAT = float
C_DOUBLE = double
C_BYTES = bytes
C_DATE = date
C_DECIMAL = "decimal(38, 18)"
C_TIMESTAMP = timestamp
}
}
}
}
]
plugin_output = "fake"
}
}
sink {
Assert {
rules {
table-names = ["fake01", "fake02"]
}
}
}
Filter File
env {
parallelism = 1
job.mode = "BATCH"
}
source {
OssFile {
path = "/seatunnel/orc"
bucket = "oss://tyrantlucifer-image-bed"
access_key = "xxxxxxxxxxxxxxxxx"
access_secret = "xxxxxxxxxxxxxxxxxxxxxx"
endpoint = "oss-cn-beijing.aliyuncs.com"
file_format_type = "orc"
// file example abcD2024.csv
file_filter_pattern = "abc[DX]*.*"
}
}
sink {
Console {
}
}
Changelog
2.2.0-beta 2022-09-26
- Add OSS File Source Connector
2.3.0-beta 2022-10-20
- [BugFix] Fix the bug of incorrect path in windows environment (2980)
- [Improve] Support extract partition from SeaTunnelRow fields (3085)
- [Improve] Support parse field from file path (2985)